


AM1331P

These miniature surface mount MOSFETs utilize a high cell density trench process to provide low $r_{DS(on)}$ and to ensure minimal power loss and heat dissipation. Typical applications are DC-DC converters and power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

$0.112 @V_{CS} = -10V$ -1.5	PRODUCTSUMMARY				
$0.112 @ V_{CS} = -10V -1.5$	(V)	$n_{DS(on)}$ (OHM)	$I_D(A)$		
1 20 1	0.	12 @ V _{CS} =-10V	-1.5		
-30 0.172 @ $V_{CS} = -4.5V$ -1.2	0.	$72 @ V_{CS} = -4.5V$	-1.2		

- $\hbox{ Low $r_{DS(on)}$ provides higher efficiency and extends battery life } \\$
- Low thermal impedance copper leadframe SC70-3 saves board space
- Fast switching speed
- High performance trench technology

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C UNLESS OTHERWISE NOTED)				
Parameter		Symbol	Maximum	Units
Drain-Source Voltage		V_{DS}	-30	V
Gate-Source Voltage		V_{CS}	±20	V
C i D i C i ^a	T _A =25°C	T_	-1.5	
Continuous Drain Current ^a	T _A =25°C T _A =70°C	1D	-1.2	Α
Pulsed Drain Current ^b		I_{DM}	-2.5	
Continuous Source Current (Diode Conduction) ^a			±0.28	A
D a	T _A =25°C	D	0.34	W
Power Dissipation ^a	T _A =25°C T _A =70°C	FD	0.22	VV
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Maximum	Units	
Maximum Junction-to-Ambient ^a	$t \leq 5 \sec$	R_{THJA}	375	0000	
	Steady-State		430] C/W	

Notes

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

AM1331P

SPECIFICATIONS (T _A = 25°C UNLESS OTHERWISE NOTED)						
Parameter	C11	T4 C #4	Limits			T
	Symbol	Test Conditions	Min	Тур	Max	Unit
Static						
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = -250 \text{ uA}$	-1			V
Gate-Body Leakage	I_{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 20 V$			±100	nA
Zero Gate Voltage Drain Current	Ipss	$V_{DS} = -24 \text{ V}, V_{GS} = 0 \text{ V}$			-1	uA
	IDSS	$V_{DS} = -24 \text{ V}, V_{CS} = 0 \text{ V}, T_J = 55^{\circ}\text{C}$			-10	
On-State Drain Current ^A	I _{D(on)}	$V_{DS} = -5 \text{ V}, V_{GS} = -10 \text{ V}$	-5			Α
Drain-Source On-Resistance ^A		$V_{GS} = -10 \text{ V}, I_D = -1.5 \text{ A}$			112	
	r _{DS(on)}	$V_{GS} = -4.5 \text{ V}, I_D = -1.2 \text{ A}$			172	mΩ
Forward Tranconductance ^A	$g_{f_{i}}$	$V_{DS} = -5 \text{ V}, I_D = -1.5 \text{ A}$		9		S
Diode Forward Voltage	V _{SD}	$I_S = -0.46 A, V_{GS} = 0 V$		-0.65		V
Dynamic ^b						
Total Gate Charge	Qg	V 10X/X/ 5X/		7.2		
Gate-Source Charge	Q_{s}	$V_{DS} = -10 \text{ V}, V_{CS} = -5 \text{ V},$		1.7		пC
Gate-Drain Charge	$Q_{\rm gd}$	$I_D=-1.5A$		1.5		
Tum-On Delay Time	t _{d(on)}	$V_{DD} = -10 \text{ V}, I_{L} = -1 \text{ A},$ $V_{GEN} = -4.5 \text{ V}, R_{G} = 6 \Omega$		10		ns
Rise Time	t_r			9		
Turn-Off Delay Time	t _{d(off)}			27		
Fall-Time	t_{f}			11		

Notes

a. Pulse test: PW <= 300us duty cycle <= 2%.

b. Guaranteed by design, not subject to production testing.

c. Repetitive rating, pulse width limited by junction temperature.